
Software Engineering and 

Architecture

An informal guide to

Debugging



Terminology

• Why are there failures in our running programs?

• Or ‘Bug’

CS@AU Henrik Bærbak Christensen 2



Worlds First Bug

CS@AU Henrik Bærbak Christensen 3



Debugging

• Some part of ‘input space’

trigger the Defect and leads

to a failure

– Software state is incorrect

• As in

– The output is incorrect

• “does wrong things”

– System hangs

– System crashes

CS@AU Henrik Bærbak Christensen 4



Debugging

• Debugging is phased

– Reproduce the defect

• Find the exact input space/situation/context in which it appears

– “Ah, the reverse thrust of Airbus 320 cannot be engaged to stop the 

plane on the runway after landing, if one set of wheels hit the ground 

very smoothly…” 

» [This is an actual bug, that stranded a plane outside the runway!]

– Find the ‘infection origin’

• Find the code that misbehaves and what state triggers it

• Understand the code ‘leading up to the defect’

– Why was the state that, leading up to the defect

– Write an automated test that reproduce the bug

– Fix it – rewrite that defective code

CS@AU Henrik Bærbak Christensen 5



Stack Traces

• Java + IntelliJ is a major help for modern day 

development as you get a Stack trace for exceptions!

– “the code lead up to the failure”

• Example

CS@AU Henrik Bærbak Christensen 6

Stack trace: The sequence of calls 
leading up to the exception begin 

thrown with line numbers!
Just click to “get there!”



Stack Traces

• Java + IntelliJ is a major help for modern day 

development as you get a Stack trace for exceptions!

– “the code lead up to the failure”

• Example

CS@AU Henrik Bærbak Christensen 7

Stack trace: The sequence of calls 
leading up to the exception begin 

thrown with line numbers!
Just click to “get there!”



The Detective Work

• Sometime the reason for the failure is “a long way” from 

the place where it manifests itself!

• Sometimes failures can lurk in the dark for years

– If the ‘triggering state’ is encountered for the first time due to 

some on-the-surface change in another part of the system…

• Detective work

– “Ok, failure because x was -1, but why it ever set to -1? It was 

passed by this method, which was called from this code, which 

was…”

CS@AU Henrik Bærbak Christensen 8



Help The Detective Work

• Often defects are because of incorrect assumptions

– State space is different from what I expected

• Either

– Use the debugger

• Which has a steep learning curve in itself 

– Or the old workhorse… Add print statements

• System.out.println(“→ In playCard, index = “ 

• + index + “, list size = “ + myHand.size());

• I have not started the debugger in years

– Take small steps saves a lot of debugging!

• But note the → marker, allow search+remove afterwards!

CS@AU Henrik Bærbak Christensen 9



Helpers in HotStone

• TestHelper.printGameState(game);

CS@AU Henrik Bærbak Christensen 10



Example

• While developing the GUI for HotStone, I encountered 

this failure…

• (In the ‘good old days’ I would not get a stack trace)

CS@AU Henrik Bærbak Christensen 11



Exception

• Identifying the exact type of failure

– Here: some code did ‘object.method()’ and object == null 

CS@AU Henrik Bærbak Christensen 12



StackTrace

• It is the full call graph when the failure occurred

– refreshField was called by onCardPlay called by FirePlayCard 

called by forEachRemaining and so on…

– So the ‘object == null’ is within the refreshField of 

HotStoneDrawing

CS@AU Henrik Bærbak Christensen 13



StackTrace

• Moreover, since Java is running in its own execution 

environment (java virtual machine) it knows a lot about 

the executing code

– I get the exact spot in the code: line 465

CS@AU Henrik Bærbak Christensen 14



Which means I can…

• Go to the source code and review to identify what went 

wrong…

CS@AU Henrik Bærbak Christensen 15



Exercise

• So what is the defect that has lead to the failure ?

– Remember: it was a null pointer exception (null reference)

CS@AU Henrik Bærbak Christensen 16



Lessons Learned

• Development stops when a failure occurs – immediately

– You start debugging at once. Do not defects pile up!

• It can be tempting to ‘just get that nice feature working 

and postpone debugging’

– Do Not. If defects pile up you simply loose focus. Keep Focus!

• The almost-finished-sheet-music-editor warstory…

CS@AU Henrik Bærbak Christensen 17



When Defect Found…

• Sometimes you spend hours tracking down that damn 

defect…

• When you find it: Heurica!

• But you do not fix it, right?

– What do you do?

• Exception: pure gui code.

CS@AU Henrik Bærbak Christensen 18


